992 resultados para HEAT TREATMENT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dual-scale model of the torrefaction of wood was developed and used to study industrial configurations. At the local scale, the computational code solves the coupled heat and mass transfer and the thermal degradation mechanisms of the wood components. At the global scale, the two-way coupling between the boards and the stack channels is treated as an integral component of the process. This model is used to investigate the effect of the stack configuration on the heat treatment of the boards. The simulations highlight that the exothermic reactions occurring in each single board can be accumulated along the stack. This phenomenon may result in a dramatic eterogeneity of the process and poses a serious risk of thermal runaway, which is often observed in industrial plants. The model is used to explain how thermal runaway can be lowered by increasing the airflow velocity, the sticker thickness or by gas flow reversal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi-2212 tapes were fabricated using a powder-in-tube method and their superconducting properties were measured as a function of heat treatment. The tapes were heated to temperature, T1 (884-915 °C), and kept at that temperature for 20 min to induce partial (incongruent) melting. The samples were cooled to T2 with a ramp rate of 120 °C h-1 and then slowly cooled to T3 with a cooling rate, R2, and from T3 to T4 with a cooling rate, R3. The tapes were kept at the temperature T4 for P1 hours and then cooled to room temperature. Both R1 and R2 were chosen between 2 and 8 °C h-1. It was found that the structure and Jc of the tapes depend on the sintering conditions, i.e. T1-4, R1-3 and P1. The highest Jc of 5800 Å cm-2 was obtained at 77 K in a self-field with heat treatment where T1 = 894 and 899 °C, R1 = R2 = 5 °C h-1 and P1 = 6 h were employed. When 0.7% of bend strain, which is equivalent to a bend radius of 5 mm, was applied to the tape, 80% of the initial Jc was sustained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The changes in the tensile properties and fracture mode brought about by heat treatment of Fe-12Cr-6Al ferritic stainless steel have been studied. A favourable combination of high strength and good ductility is obtained by heating the material at 1370 K for 2 h followed by a water quench. The high-temperature treatment results in carbide dissolution as well as an increase in the grain size. The mechanism of strengthening has been evaluated from the apparent activation energy (28 kJ mol–1) and is identified to be the unpinning of dislocations from the atmosphere of carbon atoms. As the heat-treatment temperature is increased, the fracture behaviour changes from ductile to brittle mode and this is related to the changes in grain size and friction stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vapour heat treatment of honey gold mango for access to the Japanese market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The changes in the tensile properties and fracture mode brought about by heat treatment of Fe-12Cr-6Al ferritic stainless steel have been studied. A favourable combination of high strength and good ductility is obtained by heating the material at 1370 K for 2 h followed by a water quench. The high-temperature treatment results in carbide dissolution as well as an increase in the grain size. The mechanism of strengthening has been evaluated from the apparent activation energy (28 kJ mol–1) and is identified to be the unpinning of dislocations from the atmosphere of carbon atoms. As the heat-treatment temperature is increased, the fracture behaviour changes from ductile to brittle mode and this is related to the changes in grain size and friction stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reports on investigations into the influence of heat treatment on the manufacturing of oat flakes. Sources of variation in the oat flake quality are reviewed, including the whole chain from the farm to the consumer. The most important quality parameters of oat flakes are the absence of lipid hydrolysing enzymes, specific weight, thickness, breakage (fines), water absorption. Flavour, colour and pasting properties are also important, but were not included in the experimental part of this study. Of particular interest was the role of heat processing. The first possible heat treatment may occur already during grain drying, which in Finland generally happens at the farm. At the mill, oats are often kilned to stabilise the product by inactivating lipid hydrolysing enzymes. Almost invariably steaming is used during flaking, to soften the groats and reduce flake breakage. This thesis presents the use of a material science approach to investigating a complex system, typical of food processes. A combination of fundamental and empirical rheological measurements was used together with a laboratory scale process to simulate industrial processing. The results were verified by means of industrial trials. Industrially produced flakes at three thickness levels (nominally 0.75, 0.85 and 0.90 mm) were produced from kilned and unkilned oat groats, and the flake strength was measured at different moisture contents. Kilning was not found to significantly affect the force required to puncture a flake with a 2mm cylindrical probe, which was taken as a measure of flake strength. To further investigate how heat processing contributes to flake quality, dynamic mechanical analysis was used to characterise the effect of heat on the mechanical properties of oats. A marked stiffening of the groat, of up to about 50% increase in storage modulus, was observed during first heating at around 36 to 57°C. This was also observed in tablets prepared from ground groats and extracted oat starch. This stiffening was thus attributed to increased adhesion between starch granules. Groats were steamed in a laboratory steamer and were tempered in an oven at 80 110°C for 30 90 min. The maximum force required to compress the steamed groats to 50% strain increased from 50.7 N to 57.5 N as the tempering temperature was increased from 80 to 110°C. Tempering conditions also affected water absorption. A significantly higher moisture content was observed for kilned (18.9%) compared to unkilned (17.1%) groats, but otherwise had no effect on groat height, maximum force or final force after a 5 s relaxation time. Flakes were produced from the tempered groats using a laboratory flaking machine, using a roll gap of 0.4 mm. Apart from specific weight, flake properties were not influenced by kilning. Tempering conditions however had significant effects on the specific weight, thickness and water absorption of the flakes, as well as on the amount of fine material (<2 mm) produced during flaking. Flake strength correlated significantly with groat strength and flake thickness. Trial flaking at a commercial mill confirmed that groat temperature after tempering influenced water absorption. Variation in flake strength was observed , but at the groat temperatures required to inactivate lipase, it was rather small. Cold flaking of groats resulted in soft, floury flakes. The results presented in this thesis suggest that heating increased the adhesion between starch granules. This resulted in an increase in the stiffness and brittleness of the groat. Brittle fracture, rather than plastic flow, during flaking could result in flaws and cracks in the flake. These would be expected to increase water absorption. This was indeed observed as tempering temperature increased. Industrial trials, conducted with different groat temperatures, confirmed the main findings of the laboratory experiments. The approach used in the present study allowed the systematic study of the effect of interacting process parameters on product quality. There have been few scientific studies of oat processing, and these results can be used to understand the complex effects of process variables on flake quality. They also offer an insight into what happens as the oat groat is deformed into a flake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon dioxide films are extensively used as protective, barrier and also low index films in multilayer optical devices. In this paper, the optical properties of electron beam evaporated SiO2 films, including absorption in the UV, visible and IR regions, are reported as a function of substrate temperature and post-deposition heat treatment. A comparative study of the optical properties of SiO2 films deposited in neutral and ionized oxygen is also made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HMGCoA reductase is found to be inhibited by palmitylCoA and free CoA. The inhibition of this enzyme by ATP-Mg, but not by palmityl CoA, is lost on preincubation of microsomes at 50°C for 15 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of magnesium addition and subsequent heat treatment on mild wear of a cast hypoeutectic aluminium-silicon alloy when slid against EN 24 steel is studied. Morphology and chemistry of worn surface and subsurface are studied with a view to identify wear mechanism. Stability of an iron-aluminium mixed surface layer was found to be the key factor controlling wear resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of the research work that has been carried out thus far relating the casting and heat treatment variables to the structure and mechanical properties of Al–7Si–Mg (wt-%) is presented here. Although specifications recommend a wide range of magnesium contents and a fairly high content of iron, a narrow range of magnesium contents, closer to either the upper or lower specified limits depending on the properties desired, and a low iron content will have to be maintained to obtain optimum and consistent mechanical properties. A few studies have revealed that the modification of eutectic silicon slightly increases ductility and fracture toughness and also that the effect of modification is predominant at low iron content. Generally, higher solidification rates give superior mechanical properties. Delayed aging (the time elapsed between quenching and artificial aging during precipitation hardening) severely affects the strength of the alloy. The mechanism of delayed aging can be explained on the basis of Pashley's kinetic model. It has been reported that certain trace additions (cadmium, indium, tin, etc.) neutralise the detrimental effect of delayed aging. In particular, it should be noted that delayed aging is not mentioned in any of the specifications. With reference to the mechanism by which trace additions neutralise the detrimental effect of delayed aging, various hypotheses have been postulated, of which impurity–vacancy interaction appears to be the most widely accepted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this investigation was to understand the strength development of clays below fusion or vitrification temperatures of 900°C. The other objective was to establish threshold temperatures to produce a satisfactory construction material from clayey sediments from the Western Beaufort Sea for shore protection of artificial islands with minimum expense of thermal energy. Studies were, therefore, conducted using kaolinite, bentonite, and a clayey sediment from the Beaufort Sea. Unconfined-compressive-strength tests were conducted on clay samples heat treated from 110 to 700°C. Furthermore, to understand the factors responsible for strength-development-thermogravimetric studies and pore-size analysis, using mercury porosimetry, were also conducted. A gradual increase in strength was obtained with an increase in firing temperature. However, substantial and permanent increase in strength occurred only after dehydroxylation of all the clays studied; Clay samples heated to temperatures above dehydroxylation became resistant to disintegration upon immersion in water. Results indicate that the clayey sediments from Western Beaufort Sea have to be heat treated to about 600°C to produce granular material for use as a fill or shore-protection material for artificial islands.